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1)I. Introduction
As a classical method, there are some ways to find the

split on the shaft. For example to analyse the vibration
peaks, acoustics, to measure the oil temperature by the
costdown and by the transition of the resonance[2]. To use
these methods the expert on these subject are needed.
Nevertheless, they miss finding out the clues of a crack very
often and from time to time the crack symptom are
misunderstand as an effect from a damaged bearing. Except
the analysis method, there are some other methods: namely,
to compare the time signal between damaged stage in the
operation and undamaged stage in the initial stage[3], to
look for the sensibility of eigen value[4] and to use modal
observer under model reduction. A similar way to detect a
crack is given by [5]. They have contributed in a way to a
crack detection.

But as a physical model they have used mass-lump
model. It means that the results may be not do exact in
terms of the model reduction and physical modelling. These
methods are hardly to offer clear relationships between
phenomena and change of the stiffness which are necessary
for the localization of the crack on the shaft. Therefor, a
new method based on the theory of disturbance rejection
control[6,7] is suggested for the detection of the crack,
estimating the position with respect to constant crack depth.
As an indicator for the existence of a crack, the nonlinear
dynamic effects, appeared by the change of the stiffness
coefficients due to the rotation of the cracked shaft, are
going to be investigated. These effects related to the
measurements on the bearings, are one of the important
clues to determinate the existence of the crack on the
rotating shaft. But it is very difficult to set up the clear
relation between crack and caused phenomena in the time
domain operation. This is the main task in the area of the
crack problem too. But in case of apperance of noise on the
system the results of the process may be able to be
corrupted by noise and lead to the false detection,
localization. Therefore, it is necessary to look for the effects
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of noise on the system.

Fig. 1. Physical model of the rotor

First of all, the basic state observer is established in the
way to modify the given system into the extended system
with a linear fictitious model for the nonlinear system
behaviour. In this consideration the effects of the extended
system which may be nonlinear, are interpreted as an
internal or external disturbance which is unknown at the
initial stage.

The unknown nonlinear effects are going to be appro-
ximated by the additional time signals yielded by ele-
mentary state observer. Because of using FEM model, it is
not necessary to calculate the relative compliance of the
crack. Normally the elementary stiffness matrix for an
undamaged rotor is given in the stage of the construction
and the stiffness corresponding to the crack is able to be
calculated[8,9,10].

As an example the physical model, which is divided into
N(=7) finite sub-shafts is modelled[11,12]. Every one is
called a subsystem. At both ends of the shaft there exist
dynamics of the bearings. They have the task of system
control. For the initial data needed in the operating system
the displacements of jounals are measured up on the
bearings at the left and right side of the shaft. It is assumed
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that the material properties are homogenous. The geome-
trical data and other detailed information are given in the
appendix.

II. Equation of m otion
Assuming that there is only small deviation from motion

and no redundant coordinate[13,14], the system including 3
harmonic unbalances in the 3rd, 4th and 5th subsystems in
the middle of the shaft

M g q( t ) + ( D d g
+ G g ) q( t ) + K gq ( t) =

f u ( t ) + f g ( t ) + L s( j)n ( q ( t ), t) (1)

can be accepted as linear system. Here, the index g denotes
the whole system. The equation (1) is able to be discretized
into N(=7) sub - finite systems and its equation of motion
with crack at some subsystem j is described by

i e = 1, . . . , N (2)

j k ( i e ) = [ ( i e- 1) n
2 + 1] ( i e :1, . . . , N ) (3)

i = j k, . . . , j k + n - 1 (4)

j = j k, . . . , j k + n - 1 (5)

With i e, j k, i and j the vector in explicit form and the

equation of motion can be given as follows :

q ( i e + 1)( i ) ( i= 1, . . , \ f rac n 2 + 1)
= q ( i e - 1)( \ f rac n 2 + i) (6)

N

i e = 1

j k ( i e ) + n - 1

j k = 1
[ M e q j k ( i e )( t) + ( D e+ G e) q j k ( i e )( t) + K e q j k ( i e ) ( t) ]=

[ f u ( t) ]( i e ) ( i e = 3, 4, 5) + f g ( t) ] ( i e ) ( i e = 1, . . . , N ) + L s ( n f , i e )

[ n ( q ( t ) ( t), t)] ( i e = 1, . . . , N ) (7)

where the index erepresents the elementary subsystem. The
elementary notations in the equations denote as follows :

q( t ), q ( t), q( t ) : displacement vector,velocity vector and
acceleration of the system.

M g, K g : mass matrix, stiffness matrix of undamaged

section.
D d g

, G g = - G
T g : matrix of the damping and

gyroscopic matrix.
q e ( t ), q e( t ), q e( t) : displacement vector, velocity vector

and acceleration of the elementary sub systems.
q e ( t ) Re n , n(=8), and nn(=32) are degree of freedom of

considered elementary sub system and total system. The
q e ( t ) consists of q e ( t ) = ( x l , y l, x l

, y l
;x r , y r , x r

, y r
) ,

the indices l and r denote the left and right node and
( x r , y r , x r

, y r
) are the coordinates at the subsystem.

f u ( t), f g ( t) , n ( q ( t), t ) : vector of unbalance, gravitation

input vector, and vector of the nonlinearities caused by
unexpected influence(crack).

M e, K e : mass matrix, stiffness matrix of undamaged

secton.
D d e

, G e = - G
T e, L s ( n f , i e ) : matrix of the damping,

gyroscopic effects and distribution vector with regard to the

crack at subshaft number i e

All system matrices are constant in terms of time t[9,10,
11] and the distribute matrix[11,12] is given in the
following way:

L s( i e ) = 000 , . . , 1000 , . . . , 000
000 , . . . , 1000 , . . . , 000

T

(8)

From now on the index j will be left out with respect to
the whole dynamic system.

It is normally convenient for further operation to write
the equation above via state space notation with
x ( t ) = [ q ( t) T , q( t) T ] including the nonlinearities of the

motion created by a crack and under assumption that it
concerns random disturbance in plant with s( t) .

x ( t ) = A x ( t ) + B u ( t ) + N Rn R ( x ( t) ) + Ws( t ) (9)

The equation of the measurement is given by

y = Cx ( t) + w m ( t) (10)

where A is ( N n N n ) dimensional system matrix which is
responsible for the system dynamic with N n = 2n n , u ( t)

denotes r-dimensional vector of the excitation inputs due to
gravitation and unbalances and C presents ( m e N n ) -

dimensional measurement matrix. W is the ( N n N n )

dimensional matrix and s( t ) presents the plant vector of
noise. w m denotes the white measurement noise. x(t) is
N n - dimensional state vector, and y(t) is m e - dimensional

vector of measurements respectively.
Here, the vector n R ( x ( t ) ) characterizes the n f -

dimensional vector of nonlinear functions due to the crack.
N R is the input matrix of the nonlinearties and the order of
N R is of ( Nn n f ) . It is presupposed that the matrices A,

B, C, N R , the vector u(t) and y(t) are already known. On
the assumption that the plant noise and measurement noise
are uncorrelated[15,16], the expected value E over the
arbitary pair fixed time index t, and the variance can
be defined as follows:

E [ w s( t) w T
s ( )] =

-
w s( )p( w s)dw s

-
w T

s ( )p( w T
s )dw T

s (11)

where p( w s) and p( w m ) denote the Gaussian probability

density functions. The expected value E in terms of the
plant and measurement can be given by

E [ w m ( t ) w T
m ( ) ] =

-
w m ( )p ( w m )dw m

-
w T

m ( )p ( w T
m )dw T

m (12)

2
s =

-
w sw

T
s ( )p ( w s )dw s (13)

2
m =

-
w mw T

m ( )p( w m )dw m (14)

E [ w s( t ) ] = 0, E [ w m ( t) ] = 0, (15)
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E [ w s( t) w T
m ( t) ] = 0, (16)

E [ w s ( t) w T
s ( ) ] = Q s( t) ( t - ), (17)

Q s( t) = Q T
s ( t ) , (18)

E [ w m ( t) w T
m ( ) ] = R m ( t ) ( t - ), (19)

R m ( t ) = R T
m ( t) , (20)

E [ w s( t) x T
0 ] = 0, E [ w m ( t ) x T

0 ] = 0 , (21)

where the weighting matrix Q corresponding to the plant
and R m regarding to the measurement should be suitably

chosen by the trial and errors. Now it remains to
reconstruct the unknown nonlinear vector n R ( x ( t), t ) which

mentions the disturbance force caused by a crack. The basic
idea is to get the signals from $ n_{R}(x(t)) $ approximated
by the linear fictitious model[7]

n R ( x ( t ), t) H v ( t ) (22)

v ( t ) = V v ( t) (23)

dim v ( t) = s (24)

that describes the time behaviour of the nonlinearities due
to the appearance of the crack approximately as follows:

n R ( x ( t ), t) n R ( x ( t) ) = H v ( t ) (25)

where v ( t) follows from(29, see below).
The matrices H and V have to be chosen according to the

technical background considered in terms of oscillator
model or integrator model[6,7]. To make the signals

n ( x ( t ) ) available, it needs the elementary observer(EOB)
to be designed.

Fig. 2. Elementary observer : EOB.

At first the given system(\ref{tif}) has to be extended
with the fictitious model(22, 23) into extended model

x ( t)

v ( t)
=

A N R H

0 V

x( t)

v( t)
+

I

0
u ( t) (26)

y( t) = [ ]C 0
x( t)
…

v( t)
(27)

Here, N RH couples the fictitious model(22, 23) to the

whole system. To enable the successful estimates, it is
obligatory to pay attention to the condition m e n f . i.e,

the number of the meas-urements must be at least equal or
greater than the modelled nonlinearities. In the case the
above requirements are satisfied, then the elementary
observer in terms of an identity observer can be designed as
follows:

x( t)

v( t)
=

A - L xC N R H

- L x C V

x( t)

v( t)

I

0
u ( t) +

L x

L v

y ( t) (28)

y( t) =
x( t)
…

v( t)
, (29)

where matrices L xand L v are the gain matrix of the

observer and white noise vector related to the state
measurement respectively. The above equation(28, 29)
means that the observer consists of a simulated model with
a correction feedback of the estimation error between real
and simulated measurements. The matrix A o has

( N n + n f t im es N n + n f ) -dimension and represents the

dynamic behaviour of the elementary observer. The
asymptotic stability of the elementary observer can be
guaranteed by a suitable design of the gain matrices L x and

L v which are possible under the conditions of detectability

or observabilty of the extended system(26, 27). The
successfull estimation under the asymptotic stability the
eigenvalue of the considerd observer ( A o) must be settled

on the left side of the eigenvalue of the given system ( A e )

to make the dynamic of the observer faster than the
dynamic of the system.

The fictitious model of the crack behaviours is able to be
designed using integrator model[11,12] based on the
choosen crack model[1] as follows:

H = [ ]1 0
0 1

(30)

V = [ ]0 0
0 0

(31)

n (R ; 1, x ( t ) 1 ) v 1( t ) (32)

n (R ; 2, x ( t ) 2 ) v 2( t ) (33)

The observer gain matrices L xand L v can be calculated

by pole assignment or by the Riccati equation[6,7] as
follows:

0 = A + P + P A T - P C T R - 1
m C P +

W
…
0

Q [ WT 0] (34)

L x

…
L u

= P C T R - 1
m (35)

The weighting matrix Q and $R_{m}$ have to be
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suitably chosen by the trial and errors.

III. Design of an Estim ator for the localization
In the above section it has been studied how to design the

elementary observer (EOB) for the detection at a given local
position. It means that a certain place on the shaft is
initially given as the position of a crack. In the real running
operation there is not any information about the position of
the crack, so the elementary observer has to survey not only
the assigned local position but also any other place on the
shaft and give the signals whether a crack exists or not. As
it has been known, it is possible to detect the crack assigned
certain place on the shaft. In case a crack appears at any
subsystem in running time, it must be detected as well. But
in many cases it has been shown that it is impossible or
very difficult to estimate the position of the crack at all
subsystem on the shaft with one EOB. Generally it depends
on the number of the subsystem, the number of EOB. For
the estimation of a crack position a method based on
Estimator is designed. The main idea is to feel the related
crack forces from a certain local position to the arranged
elementary observer. This is the main task in this section.

Fig. 3. Estimator(Observer bank).

Fig. from 2-1 shows the structure of the Estimator
(Observer Bank) considered.

It consists of a few elementary observers. The number
of elementary observer depends on the number of the
subsystems modelled. Every elementary observer which is
distinguished from the distribution matrix L s ( i e ) gets the

same input(excitation) u(t) and the feedback of the
measurements and is going to be set up at a suitable place
on the given system. For the appreciate arrangement of the

EOB, the distribution matrix on the analogy of (8) has been
applied. In this way the Estimator(observer bank) is
established with the EOB. To estimate the local place of the
crack, there are two steps. First of all, the EOB must be
observable to certain local in the meaning of the
asymptotical stability in the system. The requirement has
been satisfied by the criteria from Hautus[6,7]

Rank
I N n

- A - N R ( L s ( i )
) H

0 I n f - V
C e 0

= dim (x e( t) ) + dim (v ( t) )

= N n+ n f ( = s) (36)

This means that the EOB has to be capable of estimating
the crack at any location, where EOB is situated on the
given system.

The unknown crack position is to be found by the EOB
arranged in a certain local place with the related crack
forces resulting from the crack. To guarantee this the
condition(36) is supposed to be fulfilled. In this work two
EOB are arranged at the 2nd subsystem and the 6th like
this:

L s (2)( i = 2) = 1 , otherwise L s ( 2)( i ) = 0

L s ( 6)( i = 30) = 1 , otherwise L s ( 6)( i ) = 0 .

The equation of the estimator with the first EOB A at
the 2nd subsystem

x ( t) ( 2 )

v ( t) ( 2 )
[ ]A - L xC N R ( L ( s) )

- L v C V

[ ]x( t) ( 2)

v ( t) ( 2 )

+ [ ]I
0

u ( t) +

[ ]L x

L v
( y ( t) + w m ) (37)

and the 2nd EOB B at the 6th is described by

x ( t) ( 6 )

v ( t) ( 6 )
[ ]A - L xC N R ( L ( 6) )

- L v C V

[ ]x ( t) ( 6)

v( t) ( 6)

+ [ ]I
0

u ( t) +

[ ]L x

L v
( y( t) + w m ) (38)

IV. Exam ple
The Estimator consists of two EOB. The first EOB A is

situated at the 2nd subsystem and the 2nd EOB B is placed
at the 6th subsystem. As an example the given crack is at
the 3rd and 4th of the node in the system considered.

The figures from 3-1 presents the results of the theoretical
investigation without the effects of noise. and show the
crack forces at 3rd and 4th of the node in vertical direction
respectively. By the comparison of the force scale in the
figure from 3-1, the EOB A see the force from the crack
given at the 3rd and 4th of the node. In this way the
Estimator estimates the existence of a crack by thr crack
force and localize its position according to the height. The
figure from 3-2 shows corrupted signals due to random
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Fig. 4. EOB A, B : crack in 3rd and 4th Subsystem,
t ( r i;1) = 0. 135 , t ( r i;2) = 0. 15, t ( s) = 0. 03[ s] , Y

coordinate : crack force in N , X coordinate :
time in [sec], i = 1,7; j= 1, 2.

Fig. 5. EOB, A, B : crack in the 3rd and 4th Sub-
system, t ( r i ) = 0. 15, t ( s) = 0. 03[ s] .

disturbance in plant. It also means to estimate the local
crack position under constant depth with respect to crack
forces. These forces related from certain position of crack to
EOB A and EOB B are supposed to be interpreted as
mechanical forces due to the breathing and gaping from the
Gash model[1]. The numerical value of the q concerned

with the weighting matrix Q are of
Q ( i, j; i = j = 1, . . . , 32) = 10 ,

Q ( i, j; i = j = 33, . . . , 62) = 15 ,

Q ( i, j; i = j = 63) = 2 * 10 4,

Q ( i, j; i = j = 64) = 10 4. 25 respectively.

The factor r of the weighting matrix R m is of 0.975

and diagR ( i, j ) is of 1. The matrices Q and R m have been

chosen by the trial and errors.
It has been noticed that the observer estimates the signals

very well. The external signal exists in case of the opened
crack. On analogy of the system model, the minimal and
maximal values depend on the depth if only the crack is
situated at the position where the EOB are located.
Otherwise the position of the crack plays a part in the

values of the forces regarding to the excited inputs as well.
However, the crack forces are a clear indicator for the

appearance of a crack in operating time. The other figures
which have been left out because of quantity of this paper,
show that EOB B which is arranged at the right bearing, is
not able to estimate the crack in 1st subsystem. In the
simulation the given depth is of 2 mm and the time of
appearance of the crack makes 0.2 sec.

V. Sum m ary and conclusions
Using FEM the mathematical model of the rotating shaft

including a crack has been presented. Based on the
mathematical model including plant random disturbance,
the elementary observer and an estimator have been
developed. With this Estimator the task of the crack
detection and localization have been done. The above
methods give a clear relation between the damaged shaft by
a crack and the caused phenomena in vibration by means of
the measurement at both bearings. Successful theoretical
results have been given. The forces in the results are the
internal forces, which have been reconstructed as
disturbance forces created by the crack.

From the given Example, it has been theoretically shown,
that the cracks on the shaft can be detected. The Estimator
is able to estimate the location of a crack. It has been also
shown that it is possible to detect a crack and to localize
the crack position under the random plant noise and the
clean measurement. The method considered can be
applicated in the similar area of nonlinear dynamic effect
from a crack in terms of the suitable design of an Estimator.
Anyway, the suggested methods are very significant not
only for the further theoretical research and development but
also for the transfer in experiments.
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Appendix
Using the abbreviation ii = i - j k + 1, jj= j - j k+ 1 the sum

of the matrices with accordance to equations (2) and (3) can
be described as follows :

M ( g )
( jk, jk ) ( ie) =

N

ie = 1

( ie - 1) n
2 + 1

jk = 1 (
jk + n - 1

i, j= jk
M e( ii, jj) ) ( ie )

+ M 0
( dim e× dim e )

(39)

K ( g )
( jk, jk ) ( ie ) =

N

ie = 1

( ie - 1) n
2 + 1

jk = 1 (
jk + n - 1

i, j = jk
K e( ii, jj) )

( ie)
+ K 0

( dim e× d im e )

(40)

G ( g )
( jk, jk ) ( ie ) =

N

ie = 1

( ie - 1) n
2 + 1

jk = 1 (
jk + n - 1

i, j = jk
G e( ii, jj) )

( ie )
+ G 0

( dim e× dim e )

(41)

D ( g )
( jk, jk ) ( ie ) =

N

ie = 1

( ie - 1) n
2 + 1

jk = 1 (
jk + n - 1

i, j = jk
D e( ii, jj) ) ( ie )

+ D 0
( dim e× dim e )

(42)
The matrices used in equation(\ref{tif}) are follows

A =
0 I ( n n )

… … …
- ( M g ) - 1K e - ( M g ) - 1( D dg + G g )

(43)

The index i denotes the number of the subsystem. The
vector of the order of the excitation and the matrix of
nonlinearites,

u ( t ) =
0

M - 1
g f e (64 1)

(44)

N R ( L s( i ) ) =
0

- M - 1
g L s( i ) (64 1)

(45)

is of (64 x 1). where the vector of the excitation consists
of graviation and harmonic unbalance , is presented by

f e = f ( g, i e ; i = 1, . . , N ) + f ( u , i e = 3, 4, 5) (46)

f (g ; 2) = f (g ;30) = 0, (47)

f (g ; 6) = f (g ;10) = f ( g; 14) =

f (g ;18) = f ( g; 22) = f ( g; 26) = - m g , (48)

The order of the f g is of (32 x 1) and f u is of (32 x 1).

f (u ; 17) = f (u ; 21) = f ( u ; 25) = - e m
2 m (ex ) s in ( t + ) (49)

f (u ;18) = f (u ; 22) = f (u ;26) = e m
2 m ( ex ) cos ( t + ) (50)

where angle of the phase: = 0, length of the subsystem
of rotor el = 2m , Diameter of the subsystem of rotor makes
ed = 0. 25m . The mass of elemental subsystem:
m = el ED 2

4 , The density is of = 7860 kg
m 3

excentricity: e m = 0. 0001, mass of the excentricity:
m ( ex ) = 3 m respectively. The modulus E i f is of
2. 1 *10 5N / m m 2. The stiffness of bearing: K beain g =

15 * 10 5N / m m 2. The easurement matrix of order(4 x 64),
C ( i = 1, . . . 4, j = 1, . . . , 64) = 0,

except C (1 1) = C (2 imes2) = C (29 29) = C (30 30) = 1.

The number of the nonlinearities n f are of 1 and the
number of the measurements m e makes 4. The elementar
matrices K e, M e and D g which depend on the geometry,
are given in[4,5,6].
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