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. Introduction1)

In the last few years, many efforts have been done to
design a state feedback controller which assigns all the
closed loop poles in a specified region for a linear time
invariant system with perturbations. This type of a pole
assignment problem arises frequently when a good model of
the plant is available, but uncertainties exist with respect to
the parameters which may be changed during operation or
are unknown or difficult to measure. Friction coefficient,
inertia, mass, spring constant, reaction rate, and
aerodynamic coefficient etc. are common examples of such
parameters. The controller must preserve the closed loop
pole locations in a specified region for known ranges of
parameter excursions.
Among different ways for realizing the above problem,

one of the most popular is robust pole assignment in a
specified region [1]-[6]. Furuta and Kim [1] proposed a
design method for assigning the closed loop poles in a
specified disk based on gain and phase margins which is
named -stability margin. They considered that case, when
the perturbations are unknown gains as a diagonal form.
Figueroa and Romagnoli [2] presented a method for
designing controllers which attempt to place the roots of a
characteristic polynomial of an uncertain system inside some
prescribed regions. The analysis is based on a transfer
function of a characteristic polynomial. In [3], another pole
assignment method working with a spectral radius and a
pulse transfer function is proposed. The procedure is simple,
but it is used only for checking the positions of closed loop
poles, not for designing the controller.
In this paper, we deal with the procedure to design

robustly a state feedback controller which assigns all the
closed loop poles in a specified disk for a linear time
invariant system with perturbations of physical parameters.
A distinct point of the proposed robust design procedure is
that the nominal closed loop matrix is firstly
established such that all its eigenvalues are positioned in a
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specified disk. The formula for determining the closed loop
perturbations is rearranged as a function of the
nominal closed loop matrix only. Thus, if the nominal
closed loop matrix is chosen, then the perturbed closed loop
matrix can be determined from the equation

. That means, we can obtain the
desired by choosing appropriately. Next, there is
an algebraic step, in which we introduce a procedure to
determine the state feedback control law from the matrix
equation , where is a non- square
matrix. The procedure is based on a partition of every
matrix in the above equation in the horizontal direction.
This paper also introduces a "useful control disturbance"
which is used to move the closed loop poles into a desired
region. Finally, numerical example is shown to illustrate the
proposed robust pole assignment in a specified disk.

Problem formulation
We discuss a robust pole assignment problem in a

specified disk by a state feedback for linear time invariant
systems with uncertainties. Those systems are described as
follows:

̇ (1a)

or

(1b)

where is the state vector, and
is the control input. Matrices and are of constant
with appropriate dimension, and are perturbations
of the matrices and respectively. Without loss of
generality, it is assumed that the pair is controllable,
rank , and the matrices and are given in
the following form:

(2a)
or

(2b)
and

(2c)

where and are fixed known
matrices representing structured information for
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perturbations on the entries of the dynamic state matrix ,
and the input matrix respectively, and the symbol

denotes any norm.
The robust pole assignment problem leads to determine

the state feedback control law:
(3a)

or
(3b)

and a change interval of the parameter ,
such that all the closed loop poles of the given perturbed
system (1) lies in the specified disk with the
center and the radius .

. Robust pole assignment
1. Boundness of a closed loop matrix
In this subsection, we introduce the basic theories related

a boundness of a closed loop matrix which are the
background to our approach for solving the pole assignment
problem stated in Section 2.

If the perturbation matrix of the input
matrix has the form of Eq. (2c), then there exists a matrix

satisfying:

(4)

where

(5)

and , , and are the
decomposition matrices of the matrix by using a singular
value decomposition.

See Appendix A.
When the state feedback control law is applied to the

given perturbed system (1), the closed loop system has the
form:

̇ . (6)

By applying Theorem 3.1, Eq. (6) is rearranged as follows:
̇ (7a)

where
(7b)
(7c)

. (7d)
If the matrix is known, then we can

calculate the matrices and from Eqs. (7c) and
(7d) respectively.
Thus, our robust pole assignment procedure included two

steps. Firstly, we choose the nominal closed loop matrix
such that all its eigenvalues are located in a specified

disk, and to find a finite change of the parameter which
do not affect the eigenvalue distribution of , i.e., the
eigenvalues of the matrix in Eq. (7b) are still
positioned in a specified disk. Secondly, we determine the
feedback control law from Eq. (7c). This state feedback
control law will assign all the closed loop poles of the given
perturbed system (1) in a specified disk.

The following theorem can be used for choosing the
matrices and .

The eigenvalues of the matrices and
are located within the specified disk if

the following condition is satisfied:

(8)

where, indicates any norm and is an identity
matrix with appropriate dimension.

See Appendix A.
Thus, the inequality (8) is a condition for robust pole

assignment in the specified disk , and our
robust procedure is as the following. Firstly, we solve the
robust pole assignment problem with , i.e., the given
system is subjected only to perturbations of the dynamic
state matrix . In this case, our robust design procedure is
very simple comparing to the other known methods, for
example, the method proposed in [5]. We just look for the
closed loop matrix such that it satisfies the following
condition:

. (9)

When the perturbations of the input matrix are added to
perturbations of the dynamic state matrix , the elements of
the closed loop matrix change continuously with the
parameter . The eigenvalues of will be changed by
the same manner. Therefore, secondly, we increase the
parameter to determine an interval such
that the condition (8) is still satisfied, i.e., all the closed
loop poles of the given perturbed system (1) are still located
in the specified disk . From the condition (6)
we can obtain the following equation to determine a change
interval of the parameter :

(10)

We can use Gershgorin's, Schur's theorem,
and the properties of an orthogonal or unitary matrix to
establish the matrices and such that all their
eigenvalues are located in the specified disk
2. Robust feedback control law
As we mentioned before, the next step in our robust pole

assignment procedure is to determine the state feedback
control law which assigns all the closed loop poles of
the perturbed system (1) in the specified disk .
If the input matrix is a square and non-singular form,
from Eq. (7c) we can find out:

. (11)

But, when the input matrix is not a square, i.e. ,
Eq. (11) can not be solved by a common procedure. In this
case we can partition those matrices in the horizontal
direction by the following way:

.
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where , ,
, ,

, ,

and Eq. (11) is equivalent to:

(12)

And Eq. (12) can be separated as:

(13a)
. (13b)

If the sub-matrix is non-singular, then the feedback
control law is determined from Eq. (13a), i.e.,

(14)

and the condition for solving Eq. (11) is Eq. (13b).
Therefore, in our procedure, the sub-matrix can be

firstly established to determine the feedback control law
of Eq. (13a). After that, we calculate the sub-matrix
from Eq. (13b). Both and must satisfy the
condition (9). If the sub-matrix does not satisfy that
condition, then we choose repeatedly the sub-matrix
in order to get a desired sub-matrix .
If we cannot choose satisfied Eq. (13b), i.e.,

(15)

then some closed loop poles locate outside the specified
disk . In this case, we can use some known
methods, such as the Amin [4] and Solheim [8], to move
every pole from outside to inside the disk .
Here, we introduce a method to move simultaneously those
closed loop poles from outside to inside a specified disk.
This method is based on a concept "control useful
disturbance" explained in the next theorem.

Assume that the sub-matrix is
established as to satisfy Eq. (14), there exists a matrix

satisfying:

. (16)

And we can rewrite equation (13) as follows

.

Here, the matrix is given by Eq. (14), and the matrix
is named a "control useful disturbance" which is

defined as the following:

If the matrices and are perturbed to and
, and is known, we can solve the robust

pole assignment problem for the given system (1).
See Appendix A.

Assume that after step the sub-matrix is
established to satisfy Eq. (14), there exists the matrix

satisfying:

Now we deal the pole assignment problem with
uncertainties. Consider the system (1) with perturbations

and . The robust pole assignment
condition for this system is as the following:

If rank , we look for a non-
singular sub-matrix and determine the feedback control
law from:

.

Thus,

and in the worst case we have:

.

If so, there exist sub-matrices and such that:

and

or

where is a "control useful disturbance" which has the
form:

Now, the robust pole assignment design is leaded to the
same problem as just discussed before.

. Numerical example
Let us consider a problem to assign robustly the closed

loop system's poles in the disk for the following
perturbed system matrices:

with perturbations:

Using the condition (9) we can choose the nominal closed
loop matrix of the system as the following:

.

.

.

.

.

.
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We determine the matrix from Eq. (5).

If the system is subjected to perturbations of both matrices
and , then from Eq. (16) we can calculate the

maximum value of the parameter such that the closed
loop poles of the perturbed system are still located in the
specified disk .

.

It means that the perturbed system has the closed loop poles
in the specified disk if the parameter is in the
interval .
In the next step, we determine the state feedback control

law . We can choose the second and the third row
vectors of the input matrix to form the sub-matrix :

Then

and

We determine the state feedback control law by Eq. (14)

This feedback control law satisfies Eq. (13b) and assigns
all the closed loop poles of the perturbed system (1) in the
disk .

. Conclusion
This paper presents a method to solve the robust pole

assignment problem with the closed loop poles in a
specified disk for a linear time system with perturbations.
Firstly, the formula using to determine the closed loop

perturbations is established so that these perturbations are a
function of a nominal closed loop matrix. Thus, when we
choose this matrix we must pay attention to the closed loop
perturbations such that the closed loop poles is always
located in a specified disk.
Secondly, the feedback control law that assigns the

closed loop poles of a perturbed system in a specified disk
is determined from the equation . The
procedure for solving is based on partitioning every
matrix in this equation in the horizontal direction. This
paper also proposes a “control useful disturbance” which is
used to simultaneously move the closed loop poles into a
desired region. Hopefully, the idea of using a “control
useful disturbance” will be extended to solve a pole
assignment problem for a system that is uncontrollable.
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Appendix A

Using a singular value decomposition approach we can
decompose the matrix as follows:

(A.1)

where

.

We can rewrite Eq. (A.1) in the form:

or

. (A.2)

Postmultiplying both sides of Eq. (15) with and
substituting Eq. (A.2) into the right side of this equation we
can get:

.

Thus, the theorem is proved.

.

.

.

.
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From the inequality (5) and Eq. (7d) we can obtain:

.

And this equation is equivalent to:
(A.3)

and

. (A.4)

On the other hand we known that any eigenvalue of a
matrix in modulus is smaller than any norm, i.e.,

(A.5)

and

. (A.6)

Comparing inequalities (A.3) and (A.4) with inequalities
(A.5) and (A.6), respectively, we can complete the proof of
Theorem 3.2.

If there exists Eq. (16), then Eq. (12) becomes:
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or

. (A.7)

Substituting from Eq. (A.7) into Eq. (7a) we can get:

̇
. (A.8)

Thus, if is given, i.e.,

then comparing Eq. (A.8) with Eq. (7) we can obtain the
robust pole assignment conditions for the given system (1)
with perturbations and as the
following:

(A.9)

and

(A.10)

The conditions (A.9) and (A.10) are respectively similar to
the conditions (9) and (10)
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