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Control Education Using Pendulum Apparatus

Tasuku Hoshino, Masaki Yamakita, and Katsuhisa Furuta

Abstract: The inverted pendulum is a typical example of unstable systems and has been used for verification of designed control
systems. It is also very popular in control education in laboratories, serving as a good example to show the utility of the state space
approach to the controller design. This paper shows two kinds of experiment using inverted pendulum: one is the stabilization of a
single spherical inverted pendulum by a plane manipulator using visual feedback, and the other is the state transfer control of a double
pendulum. In the former experiment, the feedback stabilization using a CCD camera has major importance as an example of controller
implementation with non-contact measurement. The latter involves the standard stabilizing regulation method and nonlinear control

techniques. The details of the experimental systems, the control algorithms and the experimental results will be given.
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I. Introduction

The inverted pendulum has been widely used in control lab-
oratories to demonstrate the effectiveness of feedback control
in analogy with the control of launching a rocket [1], [7], [4].
Stabilization of not only a single inverted pendulum but also a
double or a triple inverted pendulum have been studied by many
researchers [5], [6], [8], [3]. Because of its simple structure,
tractable nonlinearity and the clear design goal, it works as a
good example for controller design in control education.

When considering about implementation of feedback sys-
tems, non-contact measurement is a very important technique.
Especially in robotics, image processing is essential for the
guidance of mobile robots. In order to jointly demonstrate the
image processing and stabilization of a system, we investigate
a system which consists of a SCARA manipulator, CCD cam-
era and a spherical pendulum. This system implements visual
stabilizing feedback control of the pendulum using its camera
image The stabilization is just like as that a person is stabilizing
an umbrella on his palm. Using the system, students easily un-
derstand the image processing, mainly the field of perspective
projection and position reconstruction, and synthesis of stabi-
lizing feedback control.

The stabilization of systems around equilibrium point, just as
described above, is one objective of control; however, there ex-
ists another important problem: to transfer a system state from
one equilibrium to another. Transferring a state of a pendulum
from pendent to inverted may be the most typical example of
such a problem [1], [12] and called the swing-up control. In
this case, the stabilizing control may be used in its final stage
in the neighborhood of the equilibrium point. The state transfer
control of a double pendulum is an extension of the problem in
[1]. In the double pendulum, there are four equilibrium states
namely Down-Down, Down-Up, Up-Down and Up-Up states
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which will be defined later. A variety of control methods are
possible when transferring the state from one equilibrium to the
others in the context of nonlinear control system design.

In this paper, the authors deal with two experimental systems
highlighting the two control problems above: the stabilization
of the single spherical inverted pendulum with a planer manip-
ulator using visual feedback and the state transfer control of a
double inverted pendulum (referred to as TITech or Furuta pen-
dulum). These two practical examples involve additional fea-
tures for undergraduate or advanced control education, compar-
ing with the conventional experimental systems using inverted
pendulum. The following sections describe each system in or-
der.

II. Visual feedback control of a spherical pendulum

1. System description

The single spherical pendulum system is shown in Figure 1.
It consists of a solid aluminum rod and a 2 d.o.f. SCARA ma-
nipulator and can be regarded as a serial connection of three
rigid links. The SCARA manipulator is driven by two DD mo-
tors. The kinematics is systematically solved by the use of ho-
mogeneous transformations between coordinate systems which
are attached to each link in Denavit-Hartenberg manner [15].
The coordinate systems in our case are shown in Figure 2. The
total kinetic energy 7', the total potential energy U and the total
dissipative energy R determine the equations of motion through
Lagrangian formulation

d (0L oL OR .

Fig. 1. A single spherical pendulum.

where L = T — U is Lagrangian, ¢;’s are generalized co-
ordinates, ();’s are generalized forces. Since all the joints are
revolutive, ¢;’s are joint angles 0, (i € {1,2,3,4}), and since
only the two joints of SCARA manipulator are actuated, Q;’s
are joint torques 7; (¢ € {1, 2}) and zero otherwise.
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Fig. 2. Coordinate frames.

Lagrange’s equations give four equations of motions:
M(0)0+C(0,0)+VO+G@O) =T, 4))

where 8 = [01, 02, 03, 04]7 and T = [1y, 72,0, 0]T; M(-), V
and C(+, -), G(-) are matrices and vectors of appropriate di-
mensions. The entries are complicated and involving trigono-
metric functions. Derivation of the model was performed using
a symbolic manipulation tool of equations such as Mathemat-
ica.

By linearly approximating equation (1) around an equilib-
rium point Gy = [0, 7/2, 7/2, 0]7, the equations of motion
for the 2-D pendulum with SCARA manipulator can be repre-
sented in a linear state equation:

Table 1. DH parameters for 2-D pendulum

1 a; d-L (673 91
1 ax 0 0 01
2 az 0 7T/2 6'2
3 (=00 0 —w/2 063
4 l 0 0 04

Table 2. Model parameters

g the gravity acceleration
al length of 1st manipulator link
a2 length of 2nd manipulator link
lp  ahalf of length of the pendulum (= [/2)
m1  mass of Ist link
mso  mass of 2nd link
myp  mass of the pendulum
Ji inertia of 1st link around the joint
J2 inertia of 2nd link around the joint
Jp  inertia of the pendlumn around the bottom
Vi friction coefficient of 1st joint

Vo friction coefficient of 2nd joint

{i o 04 I4 xr + 04 12 w
&] [-M7'Go —My'Vo ||z My ]| 0

2
where & := 8 — 09, u := [11, 127, and
J1+ J2 + mga% 9
+mpa? + mpa2 J2 +mpas —mpail, mpazly
M= Jo + mpa2 Jo + mpa2 0 mpazly |
—mpaily 0 JIp

mpazlp mpazly 0 Jp

Vi 0 o 0O, O:
V0:|: 0 Vs 2:| , G0=|:02 —mplpg 0
(0}

0O- 0 —myplpg

M, Vo,Gy are an inertia matrix, friction term and grav-
ity term respectively, linearly approximated at the equilibrium
state.

2. Visual measuring

Taking two joint angles of SCARA and the position of the top
of the pendulum [z, 4;]” as outputs, the linearly approximated
measurement equation is given as follows:

01 1 0 0 0
02 0 1 0 0 x
= = 0] . @3
Y Tt —az —az 0 —I ! [ x ] ( )
Yt ai 0 0 -l

The top position is visually measured by a CCD camera. In
general, the CCD camera can be modeled as a perspective pro-
jection from the workspace coordinate R* > [, y, 2]” to the
camera image coordinate [u, v]T € RZ?. To determine the
workspace coordinate from the measurement, stereo vision is
required. However, since the angle deviation of the pendulum
is small, the top height is nearly fixed; therefore 2-D measure-
ment is enough for the purpose. Moreover, the camera model
is reduced by assuming that the workspace coordinate of the
top [w+, y¢]” is given by its camera coordinate [u¢, v:]” in the
following affine relation:

focal point
camera coordinates: (ut,v:)T

workspace coordinates: (x, y:)T
pendulum

Fig. 3. Measuring with a CCD camera.
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This makes the calibration process easier: the parameters

kz0, kzu, Kzv, kyo, Kyu, kyo are determined by minimizing the
residuals

Sz

25
Z{xti - (kTO + kzulti + km:Uti)}Qy
=1

25
Syy = Z{ytz - ('IfyO + kyuuti + kyvvti)}Qy
=1

which can be solved by the linear least square method. Equation
(4) is quite simple but it yields enough estimates of top position
of the pendulum as shown in Figure 4.

3. Experiments
Several controller design methods are applicable for system

{(2), 3}. For our educational purpose, a LQ regulator with
state observer was chosen. Figure 5 is a block diagram of the
overall system. The experimental result is shown in Figure 6.
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Fig. 4. Calibration result.
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Fig. 5. Closed loop system.

Fig. 6. Angle deviations from up-right position.

x_3 and x_4 stand for x3 and x4, the 3rd and 4th entries of x,
which represent the angle deviations of the pendulum in two
directions from its upright position. While there appears low-
frequency persistent oscillation in the angle deviations due to
the dry friction at the manipulator joints, the figure shows that
the stabilization in both directions was successfully carried out.

III. State transfer control of a double pendulum

1. System description

We developed a rotationally driven double pendulum (the
TITech double pendulum) shown in Figures 7 and 8. It has fol-
lowing advantages against the standard pendulum on a linear
rail:

1. The first joint around which control input is exerted does
not have hardware limitation on the movement since it is rota-
tional joint.

2. The first pendulum is attached directly to a rigid arm fixed
to the rotor of the actuator; there exists less dynamic uncertain-
ties than conventional cart type systems.

3. The actuator is a DD motor. It is free from backlash and
flexibility of gear transmissions.

The first characteristic is essential in order to implement the
state transfer control, since especially in the double pendulum
case, long traveling distance of link O around the first joint is
necessary. Details of the modeling can be found in [13], [14].

Fig. 7. The TITech double pendulum.
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Fig. 8. TITech double pendulum and its coordinate systems.

2. State transfer control from one equilibrium to others

In the TITech double pendulum, there are four equilibrium
states as shown in Figure 9. Moreover, there is relative equi-
librium with limit cycle where link 1 is standing and link 2
is rotating. Stabilization of these equilibria itself is of inter-
est study, but the authors proceed to transferring state from one
of the equilibria to another. There are several paths for the state
transfer as shown in Figure 10. Once state transfers represented
by these paths are established by controlling each, the swing up
control will be made possible by connecting appropriate paths.

In the following, the authors firstly consider the state transfer
control of path 11, 9, 16 and 13. Then by connecting these
paths, swing-up of the double pendulum by switching control
is constructed. This is a flexible approach to derive a switching
control law for the swinging up control.
2.1 State transfer control from down-down to up-down

For the state transfer control, we employ a method proposed
in [12] based on energy control. when we apply the control
method to our system, we ignore the effects of link 2 as distur-
bances since the weight of link 2 is rather less than that of link
1 in our system. The basic idea is as follows. Let U; be total
energy of link 1 consisting of potential and kinematic energy.
Taking Uy — Ui4 as a criterion function where U4 is a total
energy corresponding to the Up-Down state, the control input
is determined so that the criterion function approaches to zero.
Since 0y will become unstable during the control, a stabilizing
control for 0y is applied after the Up-Down state is achieved.
See the details in [12].
2.2 State transfer control from Up-Up to Up-Down

The basic strategy of the state transfer control from Up-Up
to Up-Down is to robustly stabilize link 1 against disturbance
caused by the motion of link 2, during the state is far from the
target Up-Down state. This is possible because the stabilization
of a single inverted pendulum is very robust against external
force disturbances applied to the pendulum rod. In our system
we employ a quadratic stabilization method as a robust control
algorithm as in [14].
2.3 Stabilizing a limit cycle

Fig. 9. Four equilibrium states of the system.

Fig. 10. Paths from one equilibrium to another.
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Fig. 11. State transition (path 11 and 9).

Fig. 12. State transition (path 11, 16 and 13).

When the authors repeatedly performed the experiments of
the state transfer control from Up-Up to Up-Down, a kind of
pendulum motion, like a limit cycle, was found; 6y and 6, are
maintained in the neighborhood of Up-Down state and 65 is
rotating. Furthermore, the period of the rotation proved to be
possible to control by a scalar controller parameter. The mech-
anism of the control has not been fully analyzed yet; but the
phenomenon appears every time. We concluded that the control
method is very robust for the initial conditions from the observ-
ing experiments of several times. Note that in this case 6 is not
taken into account in measuring the distance from the Up-Down
state. State transfer control from the limit cycle to Up-Up (path
15) and from the limit cycle to Up-Down (path 14) and vice
versa can be easily implemented by choosing the control gain.
Consult [14] for more details.

2.4 State transfer control from Up-Down to Up-Up

The basic idea is similar to that of the state transfer control
from Down-Down to Up-Down. It must be considered, how-
ever, to maintain 6y and 6, in the neighborhood of the Up-Down
in this case. Let a partial energy of link 2 be Us:

U= —(J2+ m2l§)922 + magla(1 + cos62),

N | =

where Ja, mae, l2 is the inertial moment, the mass and the posi-
tion of link 2, respectively. Taking the following function as a
criterion function,

V =Us — Usq
where
Uszq = 2maglo + o, o > 0.

We can derive a control input by taking a derivative of the
above criterion function as in [14]. Unfortunately, this control
law is not available when 92 = 0 and, if we continuously use
this control law, 6; will become unstable. Therefore we modi-
fied the actual control method as follows consisting two phases:
Stepl If the state (61, 02) are in the neighborhood of Up-Down
ones, the above control law is used to control Us.

Step2 If (01,02) are far from the Up-Down state, the control
method in the state transfer control from Up-Up to Up-Down is
applied.

3. Experimental results

Figure 11 shows one of the experimental results, where the
state transfer from Down-Down to Up-Up via Up-Down (path
11 and 9 in Figure 10). Figure 12 shows another state transfer
from Down-Down to Up-Up through the limit cycle (path 11, 16
and 13 in Figure 10). In both cases, the state was successfully
transfered one after another.

IV. Conclusions

In this paper we have shown two experimental systems using
inverted pendulum for control education. We have been using
a single inverted pendulum system over 10 years as an exper-
imental system in undergraduate experimental course. Since

students get very excited to stabilize the system in the class, we
think that they will also be interested in the systems shown in
this paper. We believe that this paper will give a cure to develop
good experimental systems for control education.
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