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Control Education Using Pendulum Apparatus
Tasuku Hoshino, Masaki Yamakita, and Katsuhisa Furuta

Abstract: The inverted pendulum is a typical example of unstable systems and has been used for veri�cation of designed controlsystems. It is also very popular in control education in laboratories, serving as a good example to show the utility of the state spaceapproach to the controller design. This paper shows two kinds of experiment using inverted pendulum: one is the stabilization of asingle spherical inverted pendulum by a plane manipulator using visual feedback, and the other is the state transfer control of a doublependulum. In the former experiment, the feedback stabilization using a CCD camera has major importance as an example of controllerimplementation with non-contact measurement. The latter involves the standard stabilizing regulation method and nonlinear controltechniques. The details of the experimental systems, the control algorithms and the experimental results will be given.
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I. IntroductionThe inverted pendulum has been widely used in control lab-oratories to demonstrate the effectiveness of feedback controlin analogy with the control of launching a rocket [1], [7], [4].Stabilization of not only a single inverted pendulum but also adouble or a triple inverted pendulum have been studied by manyresearchers [5], [6], [8], [3]. Because of its simple structure,tractable nonlinearity and the clear design goal, it works as agood example for controller design in control education.When considering about implementation of feedback sys-tems, non-contact measurement is a very important technique.Especially in robotics, image processing is essential for theguidance of mobile robots. In order to jointly demonstrate theimage processing and stabilization of a system, we investigatea system which consists of a SCARA manipulator, CCD cam-era and a spherical pendulum. This system implements visualstabilizing feedback control of the pendulum using its cameraimage The stabilization is just like as that a person is stabilizingan umbrella on his palm. Using the system, students easily un-derstand the image processing, mainly the �eld of perspectiveprojection and position reconstruction, and synthesis of stabi-lizing feedback control.The stabilization of systems around equilibrium point, just asdescribed above, is one objective of control; however, there ex-ists another important problem: to transfer a system state fromone equilibrium to another. Transferring a state of a pendulumfrom pendent to inverted may be the most typical example ofsuch a problem [1], [12] and called the swing-up control. Inthis case, the stabilizing control may be used in its �nal stagein the neighborhood of the equilibrium point. The state transfercontrol of a double pendulum is an extension of the problem in[1]. In the double pendulum, there are four equilibrium statesnamely Down-Down, Down-Up, Up-Down and Up-Up states
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which will be de�ned later. A variety of control methods arepossible when transferring the state from one equilibrium to theothers in the context of nonlinear control system design.In this paper, the authors deal with two experimental systemshighlighting the two control problems above: the stabilizationof the single spherical inverted pendulum with a planer manip-ulator using visual feedback and the state transfer control of adouble inverted pendulum (referred to as TITech or Furuta pen-dulum). These two practical examples involve additional fea-tures for undergraduate or advanced control education, compar-ing with the conventional experimental systems using invertedpendulum. The following sections describe each system in or-der.
II. Visual feedback control of a spherical pendulum1. System descriptionThe single spherical pendulum system is shown in Figure 1.It consists of a solid aluminum rod and a 2 d.o.f. SCARA ma-nipulator and can be regarded as a serial connection of threerigid links. The SCARA manipulator is driven by two DD mo-tors. The kinematics is systematically solved by the use of ho-mogeneous transformations between coordinate systems whichare attached to each link in Denavit-Hartenberg manner [15].The coordinate systems in our case are shown in Figure 2. Thetotal kinetic energy T , the total potential energy U and the totaldissipative energy R determine the equations of motion throughLagrangian formulation
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Fig. 1. A single spherical pendulum.

where L = T − U is Lagrangian, qi's are generalized co-ordinates, Qi's are generalized forces. Since all the joints arerevolutive, qi's are joint angles θi(i ∈ {1, 2, 3, 4}), and sinceonly the two joints of SCARA manipulator are actuated, Qi'sare joint torques τi(i ∈ {1, 2}) and zero otherwise.
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Fig. 2. Coordinate frames.

Lagrange's equations give four equations of motions:
M(�)�̈ +C(�, �̇) + V �̇ +G(�) = � , (1)

where � = [θ1, θ2, θ3, θ4]
T and � = [τ1, τ2, 0, 0]T ;M(·), Vand C(·, ·), G(·) are matrices and vectors of appropriate di-mensions. The entries are complicated and involving trigono-metric functions. Derivation of the model was performed usinga symbolic manipulation tool of equations such as Mathemat-ica.By linearly approximating equation (1) around an equilib-rium point �0 = [0, π/2, π/2, 0]T , the equations of motionfor the 2-D pendulum with SCARA manipulator can be repre-sented in a linear state equation:

Table 1. DH parameters for 2-D pendulum

i ai di αi θi1 a1 0 0 θ12 a2 0 π/2 θ23 ε (=0) 0 −π/2 θ34 l 0 0 θ4

Table 2. Model parameters

g the gravity acceleration

a1 length of 1st manipulator link

a2 length of 2nd manipulator link

lp a half of length of the pendulum (= l/2)

m1 mass of 1st link

m2 mass of 2nd link

mp mass of the pendulum

J1 inertia of 1st link around the joint

J2 inertia of 2nd link around the joint

Jp inertia of the pendlumn around the bottom

V1 friction coef�cient of 1st joint

V2 friction coef�cient of 2nd joint
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where x := � − �0, u := [τ1, τ2]
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M0,V 0,G0 are an inertia matrix, friction term and grav-ity term respectively, linearly approximated at the equilibriumstate.2. Visual measuringTaking two joint angles of SCARA and the position of the topof the pendulum [xt, yt]
T as outputs, the linearly approximatedmeasurement equation is given as follows:
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The top position is visually measured by a CCD camera. Ingeneral, the CCD camera can be modeled as a perspective pro-jection from the workspace coordinate R3 3 [x, y, z]T to thecamera image coordinate [u, v]T ∈ R2. To determine theworkspace coordinate from the measurement, stereo vision isrequired. However, since the angle deviation of the pendulumis small, the top height is nearly �xed; therefore 2-D measure-ment is enough for the purpose. Moreover, the camera modelis reduced by assuming that the workspace coordinate of thetop [xt, yt]

T is given by its camera coordinate [ut, vt]
T in thefollowing af�ne relation:

pendulum

focal point
camera coordinates: (ut, vt)T

workspace coordinates: (xt, yt)T

Fig. 3. Measuring with a CCD camera.�
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This makes the calibration process easier: the parameters
kx0, kxu, kxv, ky0, kyu, kyv are determined by minimizing theresiduals

Sxx =
25X

i=1

{xti − (kx0 + kxuuti + kxvvti)}2,

Syy =
25X

i=1

{yti − (ky0 + kyuuti + kyvvti)}2,

which can be solved by the linear least square method. Equation(4) is quite simple but it yields enough estimates of top positionof the pendulum as shown in Figure 4.3. ExperimentsSeveral controller design methods are applicable for system
{(2), (3)}. For our educational purpose, a LQ regulator withstate observer was chosen. Figure 5 is a block diagram of theoverall system. The experimental result is shown in Figure 6.
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Fig. 4. Calibration result.

CCD camera

calibration(4)
ut, vtτ1, τ2

controller

xt, ytpendulum &SCARA
θ1, θ2

x̂t, ŷt

Fig. 5. Closed loop system.

Fig. 6. Angle deviations from up-right position.

x 3 and x 4 stand for x3 and x4, the 3rd and 4th entries of x,which represent the angle deviations of the pendulum in twodirections from its upright position. While there appears low-frequency persistent oscillation in the angle deviations due tothe dry friction at the manipulator joints, the �gure shows thatthe stabilization in both directions was successfully carried out.
III. State transfer control of a double pendulum1. System descriptionWe developed a rotationally driven double pendulum (theTITech double pendulum) shown in Figures 7 and 8. It has fol-lowing advantages against the standard pendulum on a linearrail:1. The �rst joint around which control input is exerted doesnot have hardware limitation on the movement since it is rota-tional joint.2. The �rst pendulum is attached directly to a rigid arm �xedto the rotor of the actuator; there exists less dynamic uncertain-ties than conventional cart type systems.3. The actuator is a DD motor. It is free from backlash and�exibility of gear transmissions.The �rst characteristic is essential in order to implement thestate transfer control, since especially in the double pendulumcase, long traveling distance of link 0 around the �rst joint isnecessary. Details of the modeling can be found in [13], [14].

Fig. 7. The TITech double pendulum.
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Fig. 8. TITech double pendulum and its coordinate systems.2. State transfer control from one equilibrium to othersIn the TITech double pendulum, there are four equilibriumstates as shown in Figure 9. Moreover, there is relative equi-librium with limit cycle where link 1 is standing and link 2is rotating. Stabilization of these equilibria itself is of inter-est study, but the authors proceed to transferring state from oneof the equilibria to another. There are several paths for the statetransfer as shown in Figure 10. Once state transfers representedby these paths are established by controlling each, the swing upcontrol will be made possible by connecting appropriate paths.In the following, the authors �rstly consider the state transfercontrol of path 11, 9, 16 and 13. Then by connecting thesepaths, swing-up of the double pendulum by switching controlis constructed. This is a �exible approach to derive a switchingcontrol law for the swinging up control.2.1 State transfer control from down-down to up-downFor the state transfer control, we employ a method proposedin [12] based on energy control. when we apply the controlmethod to our system, we ignore the effects of link 2 as distur-bances since the weight of link 2 is rather less than that of link1 in our system. The basic idea is as follows. Let U1 be totalenergy of link 1 consisting of potential and kinematic energy.Taking U1 − U1d as a criterion function where U1d is a totalenergy corresponding to the Up-Down state, the control inputis determined so that the criterion function approaches to zero.Since θ0 will become unstable during the control, a stabilizingcontrol for θ0 is applied after the Up-Down state is achieved.See the details in [12].2.2 State transfer control from Up-Up to Up-DownThe basic strategy of the state transfer control from Up-Upto Up-Down is to robustly stabilize link 1 against disturbancecaused by the motion of link 2, during the state is far from thetarget Up-Down state. This is possible because the stabilizationof a single inverted pendulum is very robust against externalforce disturbances applied to the pendulum rod. In our systemwe employ a quadratic stabilization method as a robust controlalgorithm as in [14].2.3 Stabilizing a limit cycle
Fig. 9. Four equilibrium states of the system.

Fig. 10. Paths from one equilibrium to another.
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Fig. 11. State transition (path 11 and 9).

Fig. 12. State transition (path 11, 16 and 13).

When the authors repeatedly performed the experiments ofthe state transfer control from Up-Up to Up-Down, a kind ofpendulum motion, like a limit cycle, was found; θ0 and θ1 aremaintained in the neighborhood of Up-Down state and θ2 isrotating. Furthermore, the period of the rotation proved to bepossible to control by a scalar controller parameter. The mech-anism of the control has not been fully analyzed yet; but thephenomenon appears every time. We concluded that the controlmethod is very robust for the initial conditions from the observ-ing experiments of several times. Note that in this case θ̇2 is nottaken into account in measuring the distance from the Up-Downstate. State transfer control from the limit cycle to Up-Up (path15) and from the limit cycle to Up-Down (path 14) and viceversa can be easily implemented by choosing the control gain.Consult [14] for more details.2.4 State transfer control from Up-Down to Up-UpThe basic idea is similar to that of the state transfer controlfrom Down-Down to Up-Down. It must be considered, how-ever, to maintain θ0 and θ1 in the neighborhood of the Up-Downin this case. Let a partial energy of link 2 be U2:
U2 =

1

2
(J2 + m2l

2
2)θ̇2

2
+ m2gl2(1 + cos θ2),

where J2, m2, l2 is the inertial moment, the mass and the posi-tion of link 2, respectively. Taking the following function as acriterion function,
V = U2 − U2d

where
U2d = 2m2gl2 + α, α > 0.

We can derive a control input by taking a derivative of theabove criterion function as in [14]. Unfortunately, this controllaw is not available when θ̇2 = 0 and, if we continuously usethis control law, θ1 will become unstable. Therefore we modi-�ed the actual control method as follows consisting two phases:Step1 If the state (θ1, θ2) are in the neighborhood of Up-Downones, the above control law is used to control U2.Step2 If (θ1, θ2) are far from the Up-Down state, the controlmethod in the state transfer control from Up-Up to Up-Down isapplied.3. Experimental resultsFigure 11 shows one of the experimental results, where thestate transfer from Down-Down to Up-Up via Up-Down (path11 and 9 in Figure 10). Figure 12 shows another state transferfrom Down-Down to Up-Up through the limit cycle (path 11, 16and 13 in Figure 10). In both cases, the state was successfullytransfered one after another.
IV. ConclusionsIn this paper we have shown two experimental systems usinginverted pendulum for control education. We have been usinga single inverted pendulum system over 10 years as an exper-imental system in undergraduate experimental course. Since

students get very excited to stabilize the system in the class, wethink that they will also be interested in the systems shown inthis paper. We believe that this paper will give a cure to developgood experimental systems for control education.
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